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Abstract: Accurate detection of weak optical signals is a key function for a wide range of applications.
A key performance parameter is the receiver signal-to-noise ratio, which depends on the noise of
the photodetector and the following electrical circuitry. The circuit noise is typically larger than the
noise of photodetectors that do not have internal gain. As a result, a detector that provides signal
gain can achieve higher sensitivity. This is accomplished by increasing the photodetector gain until
the noise associated with the gain mechanism is comparable to that of the output electrical circuit.
For avalanche photodiodes (APDs), the noise that arises from the gain mechanism, impact ionization,
increases with gain and depends on the material from which the APD is fabricated. Si APDs have
established the state-of-the-art for low-noise gain for the past five decades. Recently, APDs fabricated
from two Sb-based III-V compound quaternary materials, AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y,

have achieved noise characteristics comparable to those of Si APDs with the added benefit that they
can operate in the short-wave infrared (SWIR) and extended SWIR spectral regions. This paper
describes the materials and device characteristics of these APDs and their performance in different
spectral regions.

Keywords: photodetector; photodiode; impact ionization

1. Introduction

Essentially all devices that demonstrate gain also exhibit noise associated with the
underlying signal amplification mechanism. The benefit of gain is achieved when an
improvement in the signal-to-noise performance (S/N) is realized. For avalanche photodi-
odes (APDs), the gain mechanism is impact ionization, and noise arises from its stochastic
characteristic. If thermal and quantum noise are negligible compared to shot noise, the
advantage of a receiver that uses an APD with gain, M, as the detector compared to a PIN
detector is illustrated by the expression(
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where iph and idark are the photocurrent and dark current, respectively. The circuit current
noise is icircuit, and ∆f is the receiver bandwidth. The excess noise factor, F, is a measure
of the nondeterminism of the gain. It is clear that gain reduces the effect of electronic
noise, but this is mitigated by the excess noise factor, which becomes more detrimental
with increasing gain. Since the signal strength increases with gain, the optimum signal-to-
noise performance occurs at a gain where total detector noise equals the input noise of the
electrical circuitry. The performance advantage for systems that rely on the detection of
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information encoded on an optical signal has benefited a wide range of applications, includ-
ing telecommunications [1], data centers [2], spectroscopy [3,4], imaging [5], LIDAR [6],
medical diagnostics [7,8], and quantum applications [9,10].

The excess noise factor varies with material and device structure. In the local field model,
which provides good fits to the noise of APDs in which the non-local nature of impact ionizations
is not significant, the excess noise factor is expressed as F = k · M + (1 − k) · (2 − 1/M) [11], where
k is the ratio of the hole ionization coefficient, β, to that of the electron, α. While the excess noise
factor increases with gain, it does so more slowly for materials that exhibit low k-values. It is
for this reason that Si, which generates k-values in the range 0.01 to 0.02, has been the APD
of choice in the spectral range dictated by its bandgap energy, namely visible to near-infrared
(~400 nm to 950 nm).

Recently, two bulk quaternary materials, AlxGa1-xAsySb1-y lattice-matched to InP and
AlxIn1-xAsySb1-y to GaSb, have exhibited excess noise comparable to Si. Compared to Si,
these materials have the added advantage that their bandgap energies can be adjusted to
operate in the short-wave infrared (SWIR, 950 nm to 1700 nm) and extended SWIR (eSWIR,
1700 nm to 2200 nm) spectral regions. Higher Al concentrations produce wide-bandgap
material that can be used as homojunction detectors in the near-infrared. Operation in the
SWIR and eSWIR requires narrow-bandgap materials that use separate absorption and
multiplication structures to circumvent the tunneling component of the dark current. This
paper presents the electrical and optical performance of these Sb-based APDs.

2. Materials and Methods
2.1. AlxIn1-xAsySb1-y on GaSb Substrate

The epitaxial layers were grown on n-type Te-doped GaSb (001) substrates by solid-
source molecular beam epitaxy (MBE) at 460 ◦C, as determined by blackbody thermometry
(k-Space BandiT). Typically, alloy III-V alloy semiconductors are grown as random alloys
where the different types of atoms on the column III sites or column V sites are distributed
randomly. However, for the AlxIn1-xAsySb1-y material system there is a miscibility issue
that leads to islanding and inhomogeneous growth. To circumvent this difficulty, in
the AlxIn1-xAsySb1-y material system, these layers were grown as a digital alloy of the
binary alloys AlAs, AlSb, InAs, and InSb, using the following layer sequence: AlSb,
AlAs, AlSb, InSb, InAs, Sb [12,13]. As shown in Figure 1, the equivalent bandgap energy
can be tuned from ~1 µm to 5 µm by changing the Al concentration. In the following,
AlxGa1-xAsySb1-y will be referred to by the Al concentration as AlxInAsSb. Solid-source
valved-crackers provided As2 and Sb fluxes, and solid-source effusion cells provided Al,
Ga, In, Be (acceptor), and GaTe (donor) fluxes.
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Circular mesas were defined by standard photolithography processes and etched via
an N2/Cl2 inductively coupled plasma. Following the mesa etch, the exposed sidewalls
were smoothed with a dilute bromine–methanol solution. Both P and N titanium/gold
contacts were deposited by electron-beam evaporation, and the mesa sidewalls were
passivated with SU-8 to reduce surface leakage.

2.2. AlxGa1-xAs0.56Sb0.44 on InP Substrate

Epitaxial layers of AlxGa1-xAs0.56Sb0.44 can be grown lattice-matched to InP using
MBE. However, due to similar concerns as for AlxIn1-xAsySb1-y on GaSb regarding phase
separation and the miscibility gap when growing thick layers of AlxGa1-xAs0.56Sb0.44 on
InP, initial attempts at growing AlAs0.56Sb0.44 [14,15] used a very-short-period (13 Å)
superlattice of AlAs (1.7 Å) and AlSb (11.4 Å). The As2 and Sb2 fluxes in this digital alloy
growth (DA) were controlled using valved cracker cells, enabling AlAs0.56Sb0.44 of 1950 nm
thickness to be grown on InP. AlAs0.56Sb0.44 tends to oxidize readily when exposed to
air, leading to high surface leakage currents in mesa structures [16]. The target period of
the DA used here was 1.3 nm. More recently, it was found that using a reduced growth
temperature of the Al0.85Ga0.15As0.56Sb0.44 alloy of 450C avoided the phase separation
issue by suppressing the surface adatom mobility. Successful random alloy growth of
Al0.85Ga0.15As0.56Sb0.44 was undertaken using a growth rate of 0.5 µm/h and a V/III flux
ratio of ~5 [17].

3. Results
3.1. AlxIn1-xAsySb1-y p-i-n Structure APDs

Initially, to investigate the characteristics of AlxIn1-xAsySb1-y as an APD, p-i-n structures
with x = 0.7 to 0.15 were fabricated [18]. A schematic cross-section is shown in Figure 2. The
dark current density versus bias voltage of x = 0.7, 0.3, and 0.15 devices is shown in Figure 3.
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These compositions correspond to cutoff wavelengths of 1 µm, 2 µm, and 3 µm,
respectively. Measurements of the dark current versus device diameter indicated that for
the wider-bandgap materials (x ≥ 0.6), surface leakage was the dominant dark current
component. In contrast, in lower-bandgap compositions, the dark current originated in the
bulk, with a strong tunneling component. The wider-bandgap APDs exhibited gains as
high as 100.

Figure 4 shows the excess noise factor versus gain for an Al0.7InAsSb APD. Pure
electron injection was achieved by illuminating with 445 nm light. The dashed lines are
plots of the excess noise for k-values of 0, 0.05, and 0.1 using the local-field model [11].
The k-values for a commercial Si APD are shown for reference and fall between 0.01 and
0.05. A consideration for accurately determining the excess noise is that the depletion
layer width increases slightly toward the surface as the bias increases. This can increase
the responsivity, which can result in errors in determining the gain. To account for the
bias-dependent responsivity, the correction technique developed by Woods et al. [19] has
been applied to the data in Figure 4.
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AlInAsSb PIN APDs grown as a random alloy by MBE on InP substrates have also
been reported [20]. Growth on InP substrates enables illumination through the substrate,
eliminating the need for substrate removal when bonding arrays to readout circuits. It
is also beneficial that high-quality InP substrates are available up to 6 inches in diameter,
an advantage for manufacturing. Semi-insulating InP substrates are an advantage for
high-bandwidth applications. S. H. Kodati et al. reported dark current densities as low as
55 µA/cm2 at a gain of 10 at 300 K [16]. Like the digital alloy AlInAsSb APDs, the noise of
the random alloy devices was very low, characterized by a k-value of ~0.02, which calls
into question the distinction between digital and random alloys.

Recently, to gain insight into the origin of low noise in Sb-based APDs, S. K. Ahmed
et al. [21] studied the AlInAsSb alloy valence band carrier transport using non-equilibrium
Green’s functions and Boltzmann transport equation formalisms. Their analysis showed
that when the minigaps and the light-hole split-off energy gap are sufficiently large, they
create barriers that are improbable to be overcome by quantum tunneling or phonon
scattering processes. This impedes hole impact ionization in this material and improves
the excess noise performance.

3.2. AlxIn1-xAsySb1-y Separate Absorption, Charge, and Multiplication APDs

It is clear from the dark current plots in Figure 3 that the dark current of compositions
that can operate in the SWIR and eSWIR is too high and will severely limit the SNR. This is
due to the prevalence of tunneling in the narrow-bandgap materials and the high electric
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fields requisite for impact ionization. A common approach to avoid this limitation is to
use separate absorption, charge, and multiplication (SACM) structures. In these APDs,
the p-n junction and, thus, the high-field multiplication region are located in an undoped
wide-bandgap semiconductor where tunneling is insignificant and absorption occurs in
an adjacent narrow-bandgap layer. These two regions are separated by a wide-bandgap
doped charge layer that is used to tailor the electric field profile so that the field in the
multiplication layer is sufficiently high to achieve significant gain and simultaneously
maintain a low field in the absorber to suppress tunneling. Compositionally graded layers
are positioned on each side of the absorption layer to reduce charge accumulation at the het-
erojunction interfaces. Figure 5 is a cross-sectional schematic of an Al0.7InAsSb/AlxInAsSb
SACM APD.
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Figure 5. Schematic cross-section of an AlxInAsSb SACM APD. The multiplication layer has x = 0.7.
The graph on the right shows the magnitude of the electric field in each region. The substrate is GaSb.

An Al0.4InAsSb absorption layer was used to achieve operation at 1550 nm. The dark
current, photocurrent, and gain versus bias voltage of a 50 µm diameter device are shown
in Figure 6. The dark current at 95% breakdown was ~120 nA, which is approximately
100 times lower than that of Ge on Si APDs [22,23] and comparable to AlInAs/InGaAs
APDs [24]. Gain values as high as 90 have been observed. The external quantum efficiency
at 1550 nm was 35%. We note that there was no anti-reflection coating, and the absorption
layer was only 1 µm thick. Higher quantum efficiency, particularly at longer wavelengths,
can be achieved with thicker absorption layers and by adding an anti-reflection coating to
the top surface. The excess noise factor was similar to that measured for the 70% p-i-n APD
shown in Figure 4.
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Figure 6. Dark current, photocurrent, and measured and simulated (#) gain versus reverse bias of a
50 µm diameter AlxIn1-xAsySb1-y SACM APD at 300 K [25].
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To extend the operation of the AlInAsSb SACM APD to a longer wavelength, the
Al0.4InAsSb absorption layer was replaced with narrower-bandgap Al0.3InAsSb (~0.58 eV) [25].
AlInAsSb exhibits the unique characteristic of a minimal valence band discontinuity within
a wide range of bandgap energies (from 0.247 eV to 1.68 eV) [26]. Since the change in the
AlxInAsSb bandgap is primarily in the conduction band and electrons heavily dominate
impact ionization, the design of the charge layer provides a challenge. This layer must deplete
so that the conduction band barrier sufficiently lowers to allow photo-generated carriers into
the multiplication region without enabling band-to-band tunneling in the absorber. This was
accomplished by optimizing the doping and thickness of the charge layer and continuous
grading of the bandgap from the absorber to the multiplication region. The dark current
density at 200 K was 3 × 10−4 A/cm2 at M = 10, comparable to HgCdTe at 120 K for the same
gain. Under 2 µm illumination, the gain was >100, and the k-value was 0.01.

The cutoff wavelength was extended to 3 µm by further reducing the Al composition
to 0.15; in this case, the absorber was doped p-type [27]. This prevents the absorber from
fully depleting at punch-through, i.e., the voltage at which the depletion edge reaches
the absorber. The net result is a decrease in the dark current. The multiplication re-
gion remained Al0.7InAsSb. The charge layer consisted of three distinct layers, all p-type
(1 × 1017 cm−3). Starting from the unintentionally doped multiplication layer, a thin layer
of the wide-bandgap Al0.7InAsSb was grown. Then, the composition was linearly graded
down to Al0.4InAsSb. Finally, a thin layer of Al0.4InAsSb was grown to complete the doped
charge region. This final portion of the charge region was added to mitigate the high fields
in the charge layer as the device is depleted. Since the field in the charge region will ulti-
mately be much higher than in the absorber, this wider-bandgap layer is designed to protect
the device from premature tunneling breakdown. This design limited charge trapping at
the conduction band interfaces and high electric fields in the absorber. The energy band
diagrams for different bias voltages are shown in Figure 7. The dark current density versus
bias voltage from 100 K to 300 K is plotted in Figure 8. At 240 K, a maximum gain of 50
was obtained under 2 µm illumination. InAs, which has a comparable optical cutoff, is
commonly limited to low-gain operation (M < 50), even when cooled to 77 K [28,29]. At the
same illumination wavelength, an EQE of 65% at the punch-through voltage without an
anti-reflection coating was observed.
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The cutoff wavelength was extended further into the MWIR by decreasing the Al
concentration in the absorber to 0.15 [30]. Under 2 µm illumination at 100 K, these APDs
exhibited gains over 850. The excess noise factor scales with a low k-factor of ~0.04. The
unity-gain external quantum efficiency of the device peaked at 54% (1.02 A/W) at 2.35 µm
and maintained an efficiency of 24% (0.58 A/W) at 3 µm before cutting off at ~3.5 µm.
At a gain of 850, the device has a gain-normalized dark current density of 0.05 mA/cm2.
Compared with the previously reported MWIR Al0.15InAsSb-based SACM [27], at 100 K
this device has a gain-normalized DCD over two orders of magnitude lower, 0.05 mA/cm2

compared with 6 mA/cm2. HgCdTe is a widely used materials system for MWIR detection
and amplification with devices exhibiting high gain, up to 5300 [31], and near-unity excess
noise [32]. However, in addition to environmental concerns, HgCdTe is a difficult materials
system to work with specifically regarding low-defect-density crystal growth and p-type
doping. A popular III-V alternative to HgCdTe for detection below ~3.5 µm is InAs as it too
has a low excess noise factor near unity [33]. Several device implementations exist [34,35];
however, when operating at 77 K, in order to reduce the impact of band-to-band tunneling
on the dark current, the gain peaks at ~30. Operating at higher temperatures yields
increased gains, up to ~300; however, the dark current of these devices is poor due to
band-to-band tunneling. With InAs, there is a tradeoff between high gain and low dark
current density. Additionally, InAs structures incorporate thick intrinsic regions, up to 8 µm
thick, to achieve gain while keeping the electric field low enough to suppress band-to-band
tunneling. These thick intrinsic regions not only make it difficult to grow, but also reduce
the transit time bandwidth of the device.

The gain and gain-normalized dark current density (DCD) results are summarized
with III-V-based MWIR APDs in Table 1. Additionally, a selected HgCdTe-based struc-
ture [31] is included for comparison.

Table 1. The 3.5 µm cutoff SACM APD compared to other MWIR APDs.

Ref. Material Operating
Temperature (K)

Maximum
Gain

Gain Normalized
DCD (MA/cm2)

Cutoff
Wavelength (µm)

[30] Al0.05InAsSb 100 850 0.05 ~3.5
[34] InAs 77 27 0.005 ~3
[35] InAs 200 330 0.4 ~3.2
[27] Al0.15InAsSb 100 380 6.0 ~2.9
[31] HgCdTe 77 5300 0.001 ~5

3.3. Staircase APDs

The staircase avalanche photodiode was first proposed by Federico Capasso in the
1980s and intended as a low-noise solid-state replacement for a photomultiplier tube
(PMT) [36]. The staircase APD structure consists of sequential bandgap graded regions,
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which under reverse bias create the series of steps from which the structure obtains its
name (Figure 9). As electrons cross the wide-bandgap edge of the step, they have sufficient
energy to impact ionize across the narrow bandgap at the bottom of the step. This results
in immediate, localized impact ionization. The gain is given by the expression:

M = ∏n
i=1(1 + pi) (2)

where pi is the impact ionization probability for the ith step. Ideally, the probability densities
are close to unity at each step, generating a gain of 2n where n is the number of steps. The
bandgap discontinuities function analogously to the dynodes in a photomultiplier, creating
a more deterministic gain process with a resultant reduction in gain fluctuations and, thus,
lower excess noise than a conventional APD. For a staircase APD with equal probability, p,
at each step, the excess noise factor is

F(n, p) = 1 +
(

1 − p
1 + p

)(
1 − (1 + p)−n

)
(3)
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Figure 9. Band diagram and illustration of localized impact ionization of a staircase APD under
reverse bias.

For the case of unity probability, the excess noise factor reduces to 1. Compared with
an ideal k = 0 conventional APD, the excess noise asymptotically approaches 2.

Initially, the material system AlxGa1-xAs/GaAs was used to fabricate the staircase
band structures. Unfortunately, the AlxGa1-xAs/GaAs conduction band discontinuity
is insufficient to impact ionize GaAs, particularly for high-energy electrons scattered
to satellite valleys. The AlxIn1-xAsySb1-y material system, on the other hand, is well
suited for the staircase APD structure. The direct bandgap is widely tunable, and the
change in bandgap occurs almost entirely in the conduction band. Using AlxIn1-xAsySb1-y,
March et al. [37] fabricated one-, two-, and three-step staircase APDs and successfully
demonstrated 2n gain scaling. At 300 K, the average measured gains for the one-, two-,
and three-step structures were 1.77, 3.97, and 7.14 and the average Monte Carlo simulated
gains were 2.01, 3.81, and 6.71, respectively. Fitting the gain versus step count yielded a
gain of 1.92n and 1.95n for measured data and Monte Carlo simulations, respectively. The
noise for two- and three-step devices was measured at 70 kHz using a Femto DLPCA-200
transimpedance amplifier and an Agilent E4440A spectrum analyzer. Figure 10 shows the
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measured noise and theoretical plots of Equation (3) versus gain. It is clear that the staircase
APD achieves deterministic gain and achieves lower noise than conventional APDs, even
those with k = 0.
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3.4. AlxGa1-xAs0.56Sb0.44 p-i-n and n-i-p Structure APDs

Initial studies of the avalanche multiplication and excess noise properties of AlAs0.56Sb0.44
and AlxGa1-xAs0.56Sb0.44 diode structures on InP focused on thin avalanching structures
(<250 nm) [38–40]. The first report of AlAs0.56Sb0.44 with a thick multiplication region of
>1 µm was undertaken by Yi et al. [14] on a series of digital-alloy-grown p-i-n and n-i-p
structures to achieve pure electron and hole injection.

Single carrier electron and hole multiplication measurements from different avalanch-
ing width structures are shown as M-1 on a log scale in Figure 11b. The avalanching widths
are as follows: P1 (N1) = 1550 nm, P2 (N2) = 660 nm, P3 = 1150 nm, P4 = 230 nm, and
P5 = 80 nm. The InP substrates were semi-insulating and the “i” regions were uninten-
tionally doped. The background carrier concentration was mid-1015 cm−3 n-type. From
these multiplication characteristics, the ionization coefficients were extracted and these
were found to be significantly larger than most III-V semiconductors and even silicon [14]
as shown in Figure 11c. Excess noise measurements were undertaken using the noise
measurement circuit developed by Lau et al. [41] on these thicker structures as shown in
Figure 11d.

Following this, the avalanche multiplication and excess noise behavior of nominally
1 µm thick Al0.85Ga0.15As0.56Sb0.44 p-i-n structures were investigated by Lee et al. [16,17].
These structures grown by DA and RA techniques gave broadly similar multiplication
(Figure 12a) and excess noise characteristics (Figure 12b) when differences in the layer
thicknesses and background doping were corrected for. Taylor-Mew et al. [42] investigated
the multiplication and excess noise in a nominally 600 nm thick avalanching structure and
found that they could obtain an excess noise factor of 2.2 at a multiplication of 30.
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Figure 12. (a) shows the electron-initiated multiplication from two nominally 1 µm DA and RA
grown Al0.85Ga0.15As0.56Sb0.44 p-i-n structures; (b) the excess noise for the same layers as in (a).
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3.5. AlxGa1-xAs0.56Sb0.44 Separate Absorption, Charge, and Multiplication APDs

The AlxGa1-xAs0.56Sb0.44 alloys investigated so far have relatively large bandgaps and
as such are not suitable for detecting longer wavelengths that are of interest for SWIR
applications. Using a lower Al composition will reduce the bandgap, but this may give rise
to high quantum mechanical tunneling dark currents at the high electric fields necessary for
APD operation. As this material system is lattice-matched to InP, we can, however, use In-
GaAs or GaAs0.56Sb0.44 as the narrow-bandgap absorber material in a SACM structure with
the avalanche multiplication occurring in the wider-bandgap AlxGa1-xAs0.56Sb0.44. Initial
studies used InGaAs absorber regions and thin multiplication regions of AlAs0.56Sb0.44 [43]
or Al0.85Ga0.15As0.56Sb0.44 [44]. While the temperature variation of the multiplication is
reduced [35] and the APD speed improved [36] in these structures, the excess noise is only
reduced primarily by the ‘dead-space’ effect rather than exploiting the large α/β ratio that is
seen in thicker multiplication regions operating at lower electric fields. The first report of a
SACM using a 1 µm thick multiplication region and a 500 nm thick GaAs0.56Sb0.44 absorber
was by Lee et al. [45], as shown in Figure 13a. The current–voltage characteristics and gain
versus bias voltage are shown in Figure 13b,c, respectively. Multiplication values of ~278
could be achieved with an F of 2.7 at M = 60, corresponding to a k = ~0.015 (Figure 13d).
Additionally shown in Figure 13d is the excess noise of silicon and a Hamamatsu InGaAs
APD device.
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The speed performance of these Al0.85Ga0.15As0.56Sb0.44 APDs has been reported for
the first time. A 200 µm diameter device has a −3 dB bandwidth of 0.7 GHz and a
gain bandwidth product (GBP) of 11 at a reverse bias of 64 V. A similar structure with a
thicker 885 nm GaAs0.56Sb0.44 absorber and a 200 nm thick Al0.85Ga0.15As0.56Sb0.44 multi-
plication region also demonstated a maximum multiplication of 180 but with a slightly
higher noise of F = 2.48 at M = 20 [46], presumably due to the higher electric field in the
multiplication region.

3.6. Temperature Variation of Breakdown Voltage

Typically, as carriers are accelerated by the electric field and gain sufficient energy
to impact ionize, they also lose energy through scattering. Since phonons present one of
the primary scattering mechanisms, the gain and, thus, the breakdown voltage vary with
temperature. As a result, optical receivers that use APDs frequently require temperature
stabilization of the detector chip, which adds cost and induces a power penalty. Reducing
this limitation can simplify receiver design. Figure 14 shows the breakdown voltage temper-
ature coefficient ∆Vbd/∆T versus multiplication layer thickness for AlxIn1-xAsySb1-y [47],
InP [48], AlInAs [41], Si [49], and Al1-xGaxAsySb1-y [50,51]. The bandgap of random alloy
and digital alloy AlInAsSb and random alloy AlGaAsSb was measured by the photolu-
minescence peak and external quantum efficiency versus temperature in the range 160 K
to 300 K and found to exhibit weak temperature dependence. The weak temperature
dependence of bandgap energy for these Sb-based quaternary alloys most likely arises from
the weak electron–phonon coupling in these materials. It follows that the threshold energy
for impact ionization should be relatively independent of temperature. Modeling supports
that these quaternary alloys have high alloy scattering rates dominating phonon scattering
mechanisms that reduce the temperature dependence of the avalanche breakdown. The
origin of the weak temperature dependence of the quaternary Sb-based digital alloys is
most likely due to the dominance of alloy scattering. In the Sb-based alloys, the large Sb
and As nuclei difference creates large potential fluctuations that lead to higher disorder
potential. Consequently, the resulting higher alloy scattering rate in these quaternary digital
alloys is relatively independent of temperature. We conclude that phonon scattering is the
dominant scattering mechanism in materials with high ∆Vbd/∆T, while alloy scattering is
the dominant scattering mechanism in low ∆Vbd/∆T materials. The ∆Vbd/∆T of SACM-
APD structures is larger than the ∆Vbd/∆T of just the multiplication region by the ratio
of the total depletion width to the multiplication region width [40]. Jones et al. [39] found
that the ∆Vbd/∆T of a 1 µm thick Al0.7InAsSb multiplication region with a 1 µm thick
Al0.4InAsSb absorber SACM APD on GaSb was 15.8 mV/K. Later, the same group extended
the detection wavelength to 2 µm by using a 1 µm thick Al0.3InAsSb absorber with a 0.5 µm
thick Al0.7InAsSb multiplication region and obtained a ∆Vbd/∆T of ~13.5 mV/K [25]. Sim-
ilarly, low values of ∆Vbd/∆T have been seen with Al0.85Ga0.15As0.56Sb0.44 SACM APDs
on InP. Cao et al. [52] reported on a ∆Vbd/∆T of 4.31 mV/K in a SACM APD with a
1 µm thick GaAs0.56Sb0.44 absorber and a 200 nm thick Al0.85Ga0.15As0.56Sb0.44 multiplica-
tion region. More recently, Lee et al. [37] obtained a ∆Vbd/∆T of 11.8 mV/K in a SACM
APD with a 0.5 µm thick GaAs0.56Sb0.44 absorber and a 1 µm thick Al0.85Ga0.15As0.56Sb0.44
multiplication region.
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Figure 14. Comparison of the temperature coefficient of breakdown voltage of InP, InAlAs, Si, AlAsSb,
Al0.85GaAsSb lattice-matched to InP, and AlxIn1-xAsySb1-y lattice-matched to GaSb. Symbols are
measured values, and solid lines are linear fits.

4. Discussion

Both of the wider-bandgap Sb-containing alloy systems of AlxIn1-xAsySb1-y on GaSb
and AlxGa1-xAs0.56Sb0.44 on InP give rise to low-noise APDs. A large part of the low excess
noise performance is because of the large difference between α and β in these materials.
Figure 15 shows the ionization coefficients for AlxIn1-xAsySb1-y on GaSb, obtained from
measurements of multiplication and excess noise by Yuan et al. [53], compared with those
of InP and silicon. The ionization coefficients for Al0.85Ga0.15As0.56Sb0.44 were determined
from a series of p-i-n and n-i-p structures of different thicknesses by Guo et al. [54] and are
shown in Figure 15 together with the data for AlAsSb and silicon. In both alloy systems, the
β is significantly lower than the α. For AlxIn1-xAsySb1-y, the β is ~10 times lower than the
α while for AlxGa1-xAs0.56Sb0.44 the β is between 10 and 100 times lower, depending on the
Al composition and the electric field. The α in Al0.85Ga0.15As0.56Sb0.44 is very similar to that
of AlAsSb with the β being slightly larger. Nevertheless, the α/β ratio is still very large
and compares favorably with silicon. Work performed by Liu et al. [55] on the ionization
coefficients in GaAsBi alloys showed that the presence of the large Bi atom reduced β

significantly but did not affect α much. This was attributed to the effect Bi has in increasing
the split-off energy gap in the valence band, making it harder for holes to gain the energy to
transfer to the split-off band and hence reducing their ionization transition rate. Sb is also a
relatively large atom, and a similar increase to the split-off energy gap may explain why
Sb-based alloys show reduced β values. The large α/β values seen in these alloys cannot
fully explain the very low excess noise values seen in both these alloys, which are smaller
than those predicted by the McIntyre k-values. This suggests that some other mechanism
may be responsible for reducing the noise further. Recently, DS Ong et al. [56] suggested
that the electron ionization probability distribution function (PDF) in AlAs0.56Sb0.44 has
a narrow peak with a long tail, and that the hole ionization PDF was very broad. The
shape of the PDFs follows a Weibull–Fréchet distribution than the more usual displaced
exponential PDFs that are normally assumed. Using a Weibull–Fréchet-shaped PDF enabled
the multiplication and excess noise in AlAs0.56Sb0.44 p-i-n diodes with avalanche widths of
660 nm to 1550 nm to be replicated accurately. The reason for this Weibull–Fréchet shape is
presently unclear and will require a more detailed understanding of the band structure and
the scattering processes at high fields in these Sb-based structures.
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The Sb-based materials have demonstrated the potential to realize APDs with break-
through performance. Over the past 50 years, there have been many efforts to develop
APDs that can achieve multiplication noise as low as those fabricated from Si but that
operate at the longer wavelengths required for applications such as optical communications,
night-vision imaging, and, more recently, quantum information processing and transmis-
sion and LIDAR. AlInAsSb and AlGaAsSb now offer that capability for the SWIR and
MWIR spectral regions. An added benefit for these materials is the relative insensitivity to
changes in ambient temperature with potential savings in cost and a smaller component
count in optical receivers. Since these are III-V compounds with high absorption coefficients
and high carrier saturation velocities, they can also achieve much higher bandwidths than
Si APDs in the near-infrared or HgCdTe in the MWIR.
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