Temperature dependence of avalanche breakdown of AlGaAsSb and AlInAsSb avalanche photodiodes

Abstract—Digital alloy Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$, random alloy Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$, and random alloy Al$_{0.75}$In$_{0.25}$As$_{0.74}$Sb$_{0.26}$ are promising candidates for the multiplication regions of avalanche photodiodes (APDs) due to their low excess noise, which is comparable to that of Si APDs. The temperature dependence of avalanche breakdown in these materials has been investigated by measuring the multiplication gain. A weak temperature dependence of the breakdown voltage is observed, which is desirable to reduce the complexity of temperature or reverse bias control circuits in the optical receiver. Calculations of the alloy disorder potentials and alloy scattering rates indicate that the temperature dependence of the avalanche breakdown in these quaternary alloys is attributable to the dominant of large mass variations and high alloy scattering over phonon scattering. Impact ionization can also be impacted by the temperature dependence of the bandgap energy which affects the ionization threshold energy. Therefore, the temperature dependence of the bandgap energy has been investigated by temperature-dependent photoluminescence and external quantum efficiency measurements to further explain the temperature dependent breakdown characteristics of these materials.

Index Terms—Avalanche breakdown, bandgap energy, AlGaAsSb, AlInAsSb temperature dependence, digital alloy, random alloy.

I. INTRODUCTION

Avalanche photodiodes (APDs) are beneficial for detecting weak optical signals, leading to their utilization in a wide range of commercial, research, and military applications [1, 2]. Their internal multiplication gain results from the stochastic impact ionization process, and higher receiver sensitivity can be achieved relative to unity-gain photodiodes. Typically, in the impact ionization process, the carriers obtain the ionization threshold energy by accelerating in a high electric field multiplication region [3], and loss of energy occurs primarily through scattering, with phonon scattering being dominant. Phonon scattering exhibits strong positive temperature dependence. This results in significant variation of the gain with temperature; higher reverse bias is required to maintain the same gain at higher temperature. In practice, in order to maintain a stable gain, an active variable bias circuit or a thermoelectric cooler is required to control either the applied reverse bias or the operating temperature, increasing the cost and the system complexity [4]. The simplest and most straightforward way to simplify the bias or temperature control circuits is to choose a multiplication material with weak temperature dependence of avalanche breakdown. The temperature sensitivity is characterized by the temperature coefficient of breakdown voltage [5], which is expressed as

$$C_{bd} = \frac{\Delta V_{bd}}{\Delta T},$$

where ΔV_{bd} is the change of the breakdown voltage, and ΔT is the change of the temperature. The temperature coefficient of breakdown voltage is determined by not only the material but also the multiplication layer thickness. As the multiplication layer thickness increases, C_{bd} increases due to increased phonon scattering [6].

The choice of the multiplication layer material is determined by various factors including dark current, excess noise, and the temperature coefficient of the breakdown voltage. The excess noise is typically included as a multiplicative term, referred to as the excess noise factor, $F(M)$, in the shot noise current, I_{shot}, which is
which can be expressed as [7]

\[i_{\text{bias}} = 2q \left(I_{\text{photo}} + I_{\text{dark}} \right) M^2 F(M) \Delta f, \]

where \(I_{\text{photo}} \) and \(I_{\text{dark}} \) are the photocurrent and dark current, respectively, \(M \) is the average value of the gain, and \(\Delta f \) is the bandwidth. In the local field model for pure electron injection [7],

\[F(M) = kM + (1-k) \left(2 - \frac{1}{M} \right), \]

where \(k \) is the ratio of the hole impact ionization coefficient to the electron impact ionization coefficient. A lower \(k \) value is desirable to reduce the excess noise, leading to higher receiver sensitivity and higher gain-bandwidth product. Recently, Al_{1-x}As_{x}Sb_{1-y} and Al_{1-x}Ga_{x}Sb_{1-y} material systems [2] have been reported \(k \) values comparable to that of Si \((k \sim 0.01)\) [7, 8] and lower than that of In_{0.52}Al_{0.48}As \((k \sim 0.2)\) [9, 10] or InP \((k \sim 0.45)\) [11]. These two Sb-based material systems are promising candidates for the multiplication regions in the separate absorption, charge, and multiplication (SACM) APDs. Furthermore, thick digital alloy (DA) Al_{1-x}In_{x}Sb_{1-y} lattice-matched to GaSb with \(x = 0.6, 0.7, 0.8, 12-14 \) and thin random alloy (RA) Al_{1-x}Ga_{x}Sb_{1-y} lattice-matched to InP with \(x = 1, 0.95, 0.9, 0.85 \) [15, 16] have shown a weak temperature dependence of avalanche breakdown. Recently, we have reported low \(k \) values for thick random alloy Al_{0.7}In_{0.2}As_{0.76}Sb_{0.24} APDs [17], thick digital alloy Al_{0.85}Ga_{0.15}As_{0.56}Sb_{0.44} APDs [18], and thick random alloy Al_{0.85}Ga_{0.15}As_{0.56}Sb_{0.44} [19] APDs lattice-matched to InP. It follows that it is useful to determine the temperature characteristics of these material systems.

In this work, the avalanche breakdown with temperature variation was studied for digital alloy Al_{0.85}Ga_{0.15}As_{0.56}Sb_{0.44}, random alloy Al_{0.85}Ga_{0.15}As_{0.56}Sb_{0.44} (hereafter Al_{0.85}GaAsSb), and random alloy Al_{0.7}In_{0.2}As_{0.76}Sb_{0.24} (hereafter Al_{0.7}InAsSb) \(p^+\)-\(i\)-\(n^+ \) APDs. An explanation for the weak temperature dependence of avalanche breakdown is provided by calculating alloy disorder potentials and alloy scattering rates. In addition, the variation of the bandgap with temperature was investigated with photoluminescence and quantum efficiency measurements.

II. Epitaxial Crystal Growth and Device Fabrication

All three wafers were grown as \(p^+\)-\(i\)-\(n^+ \) structures by molecular beam epitaxy. One of the Al_{0.85}GaAsSb wafers lattice-matched to InP was grown as a digital alloy [18] and the other as a random alloy [19]. The Al_{0.7}InAsSb wafer lattice-matched to InP was grown as a random alloy [17]. The layer structures are shown in Table I, and the multiplication layer thickness were taken from capacitance-voltage (C-V) measurements [20]. Be and Si were used as p-type and n-type dopants, respectively.

Circular mesa structures were defined by photolithography and formed by the chemical etching with a solution of citric and phosphoric acid [21]. The top and bottom Ti and Au contacts were then deposited by electron-beam evaporation. Finally, the sidewalls were passivated by SU-8 to suppress the surface dark current.

<table>
<thead>
<tr>
<th>Types</th>
<th>Material</th>
<th>Thickness (nm)</th>
<th>Doping (cm(^-3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital alloy</td>
<td>Al_{0.85}GaAsSb</td>
<td>300</td>
<td>(p^+ = 1 \times 10^{19})</td>
</tr>
<tr>
<td>Al_{0.85}GaAsSb</td>
<td>300</td>
<td>(p^+ = 2 \times 10^{18})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>890</td>
<td>UID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>(n^+ = 2 \times 10^{18})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>(n^+ = 1 \times 10^{19})</td>
<td></td>
</tr>
<tr>
<td>Random alloy</td>
<td>Al_{0.7}InAsSb</td>
<td>300</td>
<td>(p^+ = 2 \times 10^{18})</td>
</tr>
<tr>
<td></td>
<td>1020</td>
<td>UID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>(n^+ = 2 \times 10^{18})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>(n^+ = 1 \times 10^{19})</td>
<td></td>
</tr>
</tbody>
</table>

III. Temperature-Dependent Avalanche Breakdown

APDs were placed in a nitrogen-cooled cryogenic chamber, and a temperature controller was used to monitor the temperature. The current-voltage (I-V) characteristics of 150-um-diameter APDs were measured under dark and illuminated conditions. A 520-nm fiber-coupled laser source was used to illuminate the device. The gain, \(G \), was calculated from the photocurrent, and the breakdown voltage can be determined by the extrapolation of the inverse gain, 1/\(G \), to zero. This 1/\(G \) extrapolation method has been utilized in various Al_{1-x}Ga_{x}Sb_{1-y} and Al_{1-x}In_{x}As_{1-y} samples, and a good linear fitting of 1/\(G \) vs. \(I \) has been obtained [12-16]. Due to the absence of temperature-dependent impact ionization coefficients for Al_{0.85}GaAsSb and Al_{0.7}InAsSb, the breakdown voltage cannot be directly determined by the simulation of multiplication gain for these three samples [4]. Finally, the temperature coefficient of breakdown voltage, \(C_{bd} \), is the slope of the linear fitting to the breakdown voltages under different temperatures.

Figure 1 shows (a) the gain versus voltage, (b) the inverse gain curves, and (c) the dark current in the range of 78 K to 360 K for DA Al_{0.85}GaAsSb APDs. Figure 2 shows similar curves for RA Al_{0.85}GaAsSb APDs in the temperature range of 200 K to 340 K. The measurements on RA Al_{0.7}InAsSb APDs in the temperature range of 200 K to 320 K are shown in Fig. 3. Based on the linear regression approach, the fitting curves of breakdown voltages under different temperatures are calculated in Fig. 4, and the \(C_{bd} \) is determined to be (4.22 ± 0.08) mV/K, (5.92 ± 0.36) mV/K, and (5.91 ± 0.37) mV/K for DA Al_{0.85}GaAsSb, RA Al_{0.85}GaAsSb, and RA Al_{0.7}InAsSb APDs. Values of \(C_{bd} \) for these three materials, commercially available materials (including InP, InAlAs, Si [5, 6]), and recently reported Sb-based materials [4, 12-16] are shown in Fig. 5. The temperature coefficient of breakdown voltage of these three
materials are significantly lower than InP, InAlAs, or Si [5, 6] with the same multiplication layer thickness.

Fig. 1. (a) Measured gain curves, (b) inverse gain (symbols) and linear fitting (solid lines) under 520-nm illumination, and (c) dark current curves for 150-µm-diameter p–i–n’ DA Al_{0.85}GaAsSb APDs from 78 K to 360 K.

Fig. 2. (a) Measured gain curves, (b) inverse gain (symbols) and linear fitting (solid lines) under 520-nm illumination, and (c) dark current curves for 150-µm-diameter p–i–n’ RA Al_{0.85}GaAsSb APDs from 200 K to 340 K.
IV. DISCUSSION

A. Role of Alloy Scattering in Sb-based Quaternary Alloys

Previously, it has been observed that ternary alloys have lower C_{bd} compared to binary compounds [22]. The low C_{bd} of ternary alloys was attributed to the dominance of alloy scattering over phonon scattering. In a random alloy, for example a ternary alloy, the constituent atoms are distributed in a random manner which leads to fluctuations in the crystal potential. This fluctuating potential results in an effective scattering process, referred to as alloy scattering, which impacts the movement of electrons through the crystal [23]. In contrast, the digital alloys are short-period superlattices that consist of binary alloy layers stacked alternately in a periodic manner. Due to the small thickness of these binary layers, there is interface roughness, leading to fluctuations of the crystal...
potential at the interfaces. This paper has demonstrated that Sb-based quaternary alloys exhibit even lower C_{bd} in comparison to both ternary and binary alloys. Thus, it appears that alloy scattering also plays a significant role in the temperature dependence of the breakdown voltage for these materials. To understand the significance of this scattering mechanism in these materials, their alloy disorder potentials and alloy scattering rates were studied.

The alloy scattering rate for a quaternary alloy is given by [24]

$$\frac{1}{\tau} = \frac{3\pi}{8\sqrt{2}} \left(\frac{m^*}{h^4} \right)^{3/2} \gamma(E) \frac{d\nu}{dE} \Omega \left| \Delta U_0 (x, y) \right|^2 S$$

with

$$\left| \Delta U_0 (x, y) \right|^2 = x(1-x)2\left[\Delta U_{AbD} \right]^2 + x(1-2x)(1-y)\left[\Delta U_{AbC} \right]^2 + x^2y(1-y)\left[\Delta U_{Bcd} \right]^2 + (1-x)^2y(1-y)\left[\Delta U_{AbD} \right]^2,$$

where the ΔU_0 is the alloy disorder potential of the quaternary alloy. The ΔU^0 on the right hand side of the equation represent the disorder potential of ternary alloys. For example, the potential ΔU_{AbD} is for a ternary alloy with composition $A_{1-x}B_{x}D$, and the potential ΔU_{Bcd} is for $B_{x}C_{1-x}D$. The alloy disorder potential arises due to the potential fluctuations created by the different nuclei sizes of the constituent atoms. In (4), m^* is the carrier effective mass, Ω is the primitive cell volume, and $\gamma(E) = E(1+\sigma E)$ describes the non-parabolic nature of the electronic band structure with E representing the carrier energy and σ describing the non-parabolicity. The ordering of atoms is described by the factor S. For completely random systems $S = 1$, and $S = 0$ for perfectly ordered systems. In our simulations, we assume $S = 1$. For a ternary alloy $A_{1-x}B_xC$, the disorder potential can be calculated by

$$\Delta U = \frac{bZ}{4\pi\varepsilon_0} \left(\frac{1}{r_A} - \frac{1}{r_B} \right) \exp(-k_r R),$$

where b accounts for the fact that the Thomas Fermi theory overestimates the screening in the semiconductor and has a value of 1.5 for most zinc blende binary semiconductors. Z is the valence number of A and B, ε_0 is the vacuum permittivity, and the covalent radii of the atoms A, B and C are given by r_A, r_B, and r_C, respectively. $k_r = \sqrt{4k_F / \pi a}$ is the Thomas Fermi screening wave number in a three-dimensional system, where a is the Bohr radius, and $k_F = (3\pi^2N_{val})^{1/3}$ is the Fermi wave number in a three-dimensional system. The valence electron density $N_{val} = 32/a^3$, and the bond length of this ternary alloy $R = 0.5\left[(x+y) + (1-x) \right]$. In (5), it is seen that the alloy disorder potential primarily depends on the difference in covalent radii of the constituent atoms and their valence number. Figure 6 shows the comparison of C_{bd} vs. ΔU^2 for various III-V binary, ternary, and quaternary alloys. The ternary alloy potentials are scaled by the factor $\nu(1-x)$, where ν is the mole fraction for atom B in $AB:C_{1-x}$, to make a valid comparison with quaternary alloy potentials [22]. The C_{bd} values for the binary and ternary alloys are obtained from the literature [4, 22], and they are for the APDs with 1-µm multiplication layer thickness. A larger radius difference leads to a higher alloy disorder potential. For example, InAlAs has a larger potential in comparison to AlGaAs because there is a large difference in the Al and In covalent radii whereas the Al and Ga covalent radii are similar. Also, alloys with different group V elements have a higher disorder potential in comparison to alloys with varying group III elements due to the larger valence number of group V elements.

We computed the alloy disorder potentials for the Sb-based quaternary alloys by using (5). $\Delta U = 0.46$ eV for RA Al$_{0.79}$InSb and $\Delta U = 0.45$ eV for RA Al$_{0.79}$InAsSb were obtained. The ΔU^2 of the Sb-based ternary and quaternary alloys are significantly larger than other III-V alloys shown in Fig. 6. Consequently, the breakdown voltage of the Sb-based alloys has the weakest temperature dependence due to the large difference in the covalent radii of As and Sb atoms, which are also group V elements. The resulting higher disorder potential of these alloys leads to an increased alloy scattering rate, given by (4), which then dominates over the phonon scattering leading to a weaker temperature dependence of the avalanche breakdown. The underlying factor for the temperature dependence of the avalanche breakdown is phonon scattering which can be altered by the temperature-dependent phonon population. A more dominant scattering mechanism, like alloy scattering, suppresses the phonon scattering mechanism which ultimately reduces the temperature dependence.

To further highlight the role of Sb atoms in the quaternary alloys, we plotted the alloy scattering rates of RA InAlAs, RA Al$_{0.79}$InSb, RA Al$_{0.85}$GaAsSb and RA AlAsSb in Fig. 7. The quaternary alloys containing Sb demonstrate much higher scattering rates in comparison to that of the ternary InAlAs. The higher scattering rates of the quaternary alloys arise from their higher alloy disorder potentials, and potentially lower electron-phonon coupling. This is consistent with experimental observation that InAlAs has a stronger temperature dependence of avalanche breakdown than the quaternary alloys do. In the
simulation, we used effective masses of 0.072m₀, 0.111m₀, 0.152m₀, and 0.0982m₀ for InAlAs, Al₀.70InAsSb, Al₀.85GaAsSb, and AlAsSb, respectively. The corresponding bandgaps for these four materials are 1.4 eV, 1.73 eV, 1.59 eV and 1.65 eV. The lattice constant of InP (5.9117 Å), which is the substrate for all three alloys, is used. The DA scattering rates cannot be included here since their corresponding value of S is unknown. The values can be extracted by carrying out Monte Carlo simulations with alloy scattering for these alloys and calibrating with experimental results.

The breakdown voltage temperature dependence is primarily due to the scattering processes, like phonon and alloy scattering, as mentioned earlier. Since the bandgap stability under different temperatures has some impact on the temperature dependence of avalanche breakdown, and it is instructive to investigate the bandgap stability of Sb-based quaternary materials as well.

Temperature-dependent photoluminescence (PL) [25] measurement was used to investigate the temperature dependence of the bandgap energy for DA Al₀.5In₀.5AsSb₁-y lattice-matched to GaSb [26], RA Al₀.70InAsSb lattice-matched to InP [17], and DA Al₀.85GaAsSb lattice-matched to InP [18]. The measured bandgap energy can be fitted by the Varshni equation [27],

$$E(T) = E_0 - \frac{\alpha T^2}{T + \beta}$$

where $E(T)$ is the energy gap at temperature T, E_0 is the energy gap at 0 K, and α and β are constants.

As shown in Fig. 8(a) and 8(b), the bandgap of DA Al₀.5In₀.5AsSb₁-y and RA Al₀.70InAsSb was determined in the temperature range of 95 K – 295 K and 160 K – 300 K, respectively. The data points were then fitted by the Varshni equation [27]. The temperature-dependent bandgap curves of these two Sb-based quaternary materials were compared with binary materials (including AlAs, AISb, InAs, InSb [28]); the Sb-based materials exhibit smaller shifts with temperature. Furthermore, the results show that both digital alloy growth and random alloy growth can provide the weak temperature dependence of bandgap for Al₁In₁-xAsSb₁-y. Therefore, the digital alloy growth itself cannot explain the bandgap stability. Figure 8(c) shows the temperature-dependent bandgap for DA Al₀.85GaAsSb in the temperature range of 160 K to 300 K, and the data points were fitted by the Varshni equation [27]. The same conclusion that the temperature dependence of the bandgap of the quaternary material is weaker than binary materials (including AlAs, AISb, GaAs, GaSb [28]) can be drawn for DA Al₀.85GaAsSb.

Temperature-dependent external quantum efficiency (EQE) measurement [21] was carried out to investigate spectrum cutoff under different temperatures for DA Al₀.7In₀.3AsSb₁-y lattice-matched to GaSb [29]. As shown in Fig. 9, external quantum efficiency measurements were carried out in the temperature range of 258.15 K to 298.15 K for DA Al₀.7In₀.3AsSb₁-y. Based on shifts in the response near cutoff, the bandgap variation with temperature was determined to be 0.29 meV/K, which is consistent with the PL measurements. In summary, both temperature-dependent PL measurements and EQE measurements demonstrate weak variation of the bandgap with temperature for Al₁In₁-xAsSb₁-y and Al₁Ga₁-xAsSb₁-y material systems, irrespective of growth method. The temperature dependence of the material bandgap is primarily attributed to electron-phonon interactions [30] that broaden the material energy states and result in the creation of energy states within the bandgap. The effect of thermal expansion on the temperature dependence is very small for covalent compounds [31]. The weak temperature dependence of bandgap for these
Sb-based quaternary alloys most likely arises from the weak electron-phonon coupling in these materials. The weak coupling results in a small broadening of the energy states and hence fewer energy levels created within the bandgap. It is possible that such weak temperature dependence of the material bandgap will somewhat lower the C_{bd} primarily as a higher order effect. On the other hand, a stronger electron-phonon coupling will most likely cause some increase in C_{bd}. Further investigations are needed to be carried out to determine the exact contribution of electron-phonon interactions on C_{bd}.

Fig. 8. Temperature-dependent photoluminescence peaks (points) and the Varshni fitting curves (solid lines) for (a) DA Al$_{0.45}$In$_{0.55}$Sb on GaSb, (b) RA Al$_{0.70}$In$_{0.30}$Sb on InP, and (c) DA Al$_{0.50}$GaAsSb lattice-matched to InP. The dash lines represent the Varshni fitting curves for the binary materials including AlAs, AlSb, InAs, InSb, GaAs, GaSb [28], and the E_0 of binary materials has been modified according for a better comparison with the investigated quaternary materials.

Fig. 9. Temperature-dependent external quantum efficiency for DA Al$_{0.50}$In$_{0.50}$Sb$_{0.45}$ lattice-matched to GaSb.

V. CONCLUSION

Temperature dependence of avalanche breakdown has been investigated for digital alloy Al$_{0.85}$Ga$_{0.15}$As$_{0.50}$Sb$_{0.44}$, random alloy Al$_{0.85}$Ga$_{0.15}$As$_{0.50}$Sb$_{0.44}$, and random alloy Al$_{0.79}$In$_{0.21}$As$_{0.71}$Sb$_{0.26}$. We observe weak dependence of the avalanche breakdown voltage on temperature for the Sb-based quaternary materials. Temperature-dependent photoluminescence and external quantum efficiency measurements reveal weak temperature dependence of the bandgap. Modeling supports that these quaternary alloys have high alloy scattering rates dominating over phonon scattering mechanisms that reduce the temperature dependence of the avalanche breakdown. This weak temperature dependence has the benefit of simplifying the temperature or reverse bias control circuits while maintaining a constant multiplication.
gain in an optical receiver.

REFERENCES

[16] X. Zhou et al., "Thin Al$_{1-x}$Ga$_x$As$_{0.56}$Sb$_{0.44}$ diodes with extremely weak temperature dependence of avalanche breakdown," Royal Society Open Science, vol. 4, no. 5, p. 170071, 2017.

[18] S. Lee et al., "Low-noise Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$ avalanche photodiodes on InP substrates," Applied Physics Letters, vol. 118, no. 8, p. 081106, 2021.

[20] B. Guo et al., "Impact ionization coefficients of direct alloy and random alloy Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$ in a wide electric field range," Journal of Lightwave Technology, vol. 30, no. 5, pp. 836-840, 2022.

[21] B. Guo et al., "Optical constants of Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$, and Al$_{0.85}$In$_{0.15}$As$_{0.56}$Sb$_{0.44}$," Applied Physics Letters, vol. 119, no. 17, p. 171109, 2022.

[22] J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. R. P. David, "Temperature dependence of avalanche multiplication and breakdown voltage in Al$_{0.8}$In$_{0.2}$As$_{0.5}$Sb$_{0.4}$, (in English), Journal of Applied Physics, vol. 115, no. 6, p. 064507, Feb 14, 2014.

[26] M. Ren, S. J. Maddox, M. E. Woodson, Y. Chen, S. R. Bank, and J. C. Campbell, "Characteristics of Al$_{0.85}$Ga$_{0.15}$As$_{0.56}$Sb$_{0.44}$ (x: 0.3–0.7) avalanche photodiodes," Journal of Lightwave Technology, vol. 35, no. 12, pp. 2380-2384, 2017.

Andrew H. Jones received his B.S. in electrical engineering from Grove City College. He worked as a navy contractor for 2 years in Pittsburgh, PA before earning a Ph.D. in electrical engineering at the University of Virginia. He is currently a postdoc in the Electrical and Computer Engineering department at the University of Virginia. His interests lie in photonic devices, specifically the design and fabrication of avalanche photodiodes for visible and infrared applications.

J. Andrew McArthur is a Masters/PhD student at the University of Texas in Austin. Working with Prof. Seth Bank, his primary research focus is on the design and epitaxial growth of III-V photodiodes in the near- and mid-infrared wavelength range. Previously, Andrew received his Bachelor's degree in Mechanical Engineering at the University of Arkansas in Fayetteville.

Sri Harsha Kodati received the master’s degree from University of Missouri-Columbia in 2016. He is currently a PhD candidate in The Ohio State University, Department of Electrical and Computer Engineering. His research aim is to develop low-cost and highly sensitive detectors for optical communications and light detection and ranging (LiDAR) applications, to replace commercial technologies. His focus is on design, modeling, fabrication, and analysis of III-V detectors employing vertical and lateral architectures.

Theodore ‘TJ’ Ronningen is a Research Scientist in the Electrical & Computer Engineering department at The Ohio State University. TJ received his PhD in Chemical Physics from Ohio State. He worked at Battelle as a Senior Research Scientist, developing products and processes to improve the detection of hazardous materials for defense and security applications. He has been awarded ten patents. At Ohio State, he supports two university-wide initiatives, the NSF NeXUS Facility and the IIT Bombay–Ohio State Frontier Center. He is the chair of the Out To Innovate professional society.

Sanjay Krishna is the George R Smith Professor of Engineering in the ECE department at the Ohio State University. Sanjay received his M.S. in Electrical Engineering and PhD in Applied Physics from the University of Michigan following which he joined UNM as a tenure track faculty member. Sanjay has received several awards including the Gold Medal from Indian Institute of Technology, Madras. Defense Intelligence Agency Chief Scientist Award for Excellence, SPIE Technology Achievement Award, IEEE Aron Kressel Award and the UNM Teacher of the Year award. Sanjay has more than 300 peer-reviewed journal articles (h-index=59), ten issued patents and several keynote and invited talks. He is the co-founder and CTO of SK Infrared, a start-up involved with the use of IR imaging for defense and commercial applications. He is a visiting faculty at IIT Bombay. He is a Fellow of IEEE, OSA and SPIE.

Jong Su Kim received the bachelor’s degree in physics from Yeungnam University, Gyeongsan, Korea in 1992, the master’s degree in Solid State Physics from Yeungnam University in 1998 and the Ph.D. degree in Solid State Physics from Yeungnam University in 2002. From 2009, He has worked as a professor in department of Physics at Yeungnam University and been studying various semiconductor photonic devices for the development of Infrared photodetectors. Specific research interest focuses on MBE growth and investigating optical properties for the III-V semiconductors.

Seth R. Bank (Fellow, IEEE) received the B.S. degree in electrical engineering from the University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, in 1999 and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, in 2003 and 2006, respectively. While at UIUC, he studied the fabrication of InGaAs–P HBTs. His Ph.D. research interests include the MBE growth, fabrication, and device physics of long-wavelength VCSELs and low-threshold edge-emitting lasers in the GaInNAs(Sb)–GaAs material system. In 2006, he was a Postdoctoral Scholar with the University of California, Santa Barbara, CA where his research centered on the growth of metal–semiconductor hetero- and nano-structures (e.g. ErAs nanoparticles in GaAs). In 2007, he joined the University of Texas at Austin, TX where he is currently an Associate Professor of electrical and computer engineering and the holder of the fifth Temple Foundation Endowed Faculty Fellowship. He has coauthored more than 175 papers and presentations in these areas. His current research interests include the MBE growth of novel heterostructures and nanocomposites and their device applications. Dr. Bank was the recipient of a 2010 Young Investigator Program Award from ONR, a 2010 NSF CAREER Award, a 2009 Presidential Early Career Award for Scientists and Engineers (PECASE) nominated by ARO, a 2009 Young Investigator Program Award from AFOSR, the 2009 Young Scientist Award from the International Symposium on Compound Semiconductors, a 2008 DARPA Young Faculty Award, the 2008 Young Investigator Award from the North American MBE Meeting, and several Best Paper Awards.

Avik Ghosh is professor of Electrical and Computer Engineering and Professor of Physics at the University of Virginia. He has over 100 refereed papers and book chapters and 2 upcoming books in the areas of computational nano-electronics and low power devices, specializing in materials to systems modeling (DFT2SPICE), including 2D materials, thin films for photodetectors, molecular electronics, subthermal switching, nanomagnetic materials and devices, and nanoscale heat flow. Ghosh did his PhD in physics from the Ohio State University and Postdoctoral Fellowship in Electrical Engineering at Purdue University. He is a Fellow of the Institute of Physics (IOP), senior member of the IEEE, and has received the IBM Faculty Award, the NSF CAREER Award, a best paper award from the Army Research Office, the Charles Brown New Faculty Teaching Award and the All-University Teaching Award.

Joe C. Campbell (Fellow, IEEE) received the B.S. Degree in Physics for the University of Texas at Austin in 1969, and the M.S. and Ph.D. degrees in Physics from the University of Illinois at Urbana-Champaign in 1971 and 1973, respectively. From 1974 to 1976 he was employed by Texas Instruments where he worked on integrated optics. In 1976 he joined the staff of AT&T Bell Laboratories in Holmdel, New Jersey. In the Crawford Hill Laboratory he worked on a variety of optoelectronic devices including semiconductor lasers, optical modulators, waveguide switches, photonic integrated circuits, and photodetectors with emphasis on high-speed avalanche photodiodes for high-bit-rate lightwave systems. In January of 1989 he joined the faculty of the University of Texas at Austin as Professor of Electrical and Computer Engineering and Cockrell Family Regents Chair in Engineering. In January of 2006, Professor Campbell moved to the University of Virginia in Charlottesville as the Lucian Carr Professor of Electrical and Computer Engineering. Professor Campbell’s technical area is photodetectors. At present he is actively involved in single-photon-counting APDs, Si-based optoelectronics, high-speed low-noise avalanche photodiodes, and high-power high-linearity photodiodes. He has coauthored eleven book chapters, 490 articles for refereed technical journals, and more than 500 conference presentations. In 2002 he was inducted into the National Academy of Engineering.