Composition-dependent structural transition in epitaxial Bi$_{1-x}$Sb$_x$ thin films on Si(111)

1Microelectronics Research Center and Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
2Research Center for the Mechanics of Solids, Structures and Materials and Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA
3Electrical and Computer Engineering Department, The University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4Institute for Energy Efficiency, University of California at Santa Barbara, Santa Barbara, California 93106, USA

DOI: 10.1103/PhysRevMaterials.3.064201

Bismuth-antimony alloys (Bi$_{1-x}$Sb$_x$) are topological insulators between 7 and 22% Sb in bulk crystals, with an unusually high conductivity suitable for spin-orbit torque applications. Reducing the thickness of epitaxial Bi$_{1-x}$Sb$_x$ films is expected to increase the maximum band gap through quantum confinement, which may improve isolation of topological surface-state transport. Like Bi(001) on Si(111), Bi$_{1-x}$Sb$_x$ has been predicted to form a black phosphorus-like allotrope with unique electronic properties in nanoscale films; however, the impact of Sb alloying on both the bulklike and nanoscale crystal structures on Si(111) is currently unknown. Here we demonstrate that the allotropic transition in ultrathin epitaxial Bi$_{1-x}$Sb$_x$ films on Si(111) is suppressed above 8–9% Sb, resulting in an unexpected (012) orientation within the topologically insulating regime. The metallic temperature-dependent conductivity associated with surface states in Bi(001) was not observed in the Bi$_{1-x}$Sb$_x$(012) films, suggesting that the (012) orientation may significantly reduce surface-state transport. Growth on a Bi(001) buffer layer may prevent this orientation transition. Finally, we demonstrate that Sb alloying improves the continuity and quality of nanoscale Bi$_{1-x}$Sb$_x$(012) films in the thickness regime expected for the black phosphorus allotrope, suggesting a promising route to large-area growth of puckered-layer two-dimensional Bi$_{1-x}$Sb$_x$, which will be necessary to harness its unique electronic properties in practical applications.

I. INTRODUCTION

While topologically insulating Bi$_{1-x}$Sb$_x$ has been extensively studied than the bismuth chalcogenide and ternary three-dimensional topological insulators (TIs) due to its relatively complex surface-state dispersion and small bulk band gap, it has recently become the focus of renewed research interest due to both its suitability among TIs for spin-orbit torque switching applications, as well as the prediction of unique physical phenomena at the L-band inversion point. Quantum confinement, which induces semiconductortlike transport in bismuth (Bi) films below approximately 100 nm, is predicted to become significant in Bi$_{1-x}$Sb$_x$ at comparable thicknesses. This has been reported to increase the maximum band gap and extend the semiconducting composition regime, which, combined with increased surface to volume ratio in thin films, may improve isolation of surface-state contributions to transport, enabling new applications utilizing topological surface states.

Single-monolayer (ML) Bi$_{1-x}$Sb$_x$ has been predicted to form a (012)-oriented (using the trigonal Bi unit cell) puckered-layer allotrope with an A17 crystal structure similar to black phosphorus, suggesting that a thickness-dependent allotropic transition analogous to epitaxial Bi on Si(111) may occur in ultrathin films. Two-dimensional (2D) puckered-layer Bi(012) exhibits distinct electronic properties from both the (001) and (012) orientations of the bulk A7 structure, including decreased metallicity, an ~0.3-eV band gap in single monolayers and nanoribbons, and increased spin splitting. If puckered-layer Bi$_{1-x}$Sb$_x$ is stable, it is likely to similarly exhibit unique electronic properties, and to facilitate compositional tuning of the A17 Bi band structure. While bulklike epitaxial Bi$_{1-x}$Sb$_x$ on Si(111) has been demonstrated, it is unclear how Sb alloying affects the allotropic transition. Understanding the growth of Bi$_{1-x}$Sb$_x$/Si(111) is therefore important not only for the integration of TI Bi$_{1-x}$Sb$_x$ with conventional integrated circuit technology, but also for exploring the properties of 2D puckered-layer Bi$_{1-x}$Sb$_x$. In this paper, we report the epitaxial growth of Bi$_{1-x}$Sb$_x$ films within the expected A7 and A17 thickness regimes on Si(111). We demonstrate using high-resolution x-ray diffraction (XRD) that Bi$_{1-x}$Sb$_x$(001) films above the critical thickness become (012) oriented at compositions of more than 8–9% Sb, coinciding with the onset of the expected TI regime. This (012) orientation is consistent

*sbank@ece.utexas.edu
with thickness, indicating that there is no early nucleation of the A7 (001) phase; rather, the puckered-layer A17 structure likely evolves into the (012)-oriented A7 structure in thicker films. While Bi$_{1-x}$Sb$_x$(001) films demonstrate the metallic temperature-dependent conductivity characteristic of conductive surface states as the film thickness is reduced \cite{16, 24, 34}, this effect is not observed in Bi$_{1-x}$Sb$_x$(012), indicating that identification of the surface states through transport measurements may be limited in TI Bi$_{1-x}$Sb$_x$/Si(111). XRD measurements of Bi/Bi$_{1-x}$Sb$_x$ superlattices suggest that growth on a Bi buffer layer \cite{15} assists in maintaining the (001) orientation within the TI regime, although such an approach may also complicate electrical measurements.

The consistent weak adhesion of Bi$_{1-x}$Sb$_x$(001) films to Si(111) \cite{35}, as well as the (012) orientation of Bi$_{1-x}$Sb$_x$ films thinner than \(~4\) nm, suggests that the early growth of Bi$_{1-x}$Sb$_x$/Si(111) is similar to Bi, and that the 2D A17 structure is likely achievable. Surprisingly, atomic force microscopy (AFM) and conductivity measurements of nanoscale Bi$_{1-x}$Sb$_x$(012) indicate that the quality of ultrathin films is significantly improved compared to Bi(012) by an autosurfac tant effect \cite{36, 37} related to reduced adatom mobility \cite{38}. By facilitating earlier coalescence of few-ML islands, Sb alloying enables electrical measurements of Bi$_{1-x}$Sb$_x$(012) films thinner than can be measured in Bi(012).

II. RESULTS

Bi$_{1-x}$Sb$_x$ films between 0 and 100% Sb and 2–50 nm were grown on intrinsic Si(111) substrates using molecular-beam epitaxy in a Varian Gen II system at a substrate temperature of 15–25 °C, with 5-rpm substrate rotation in plane during growth. A downward-looking Veeco Sumo cell was used to deposit 6N Bi source material (<1-ppm impurities), while a Veeco valved cracker source was used to deposit 6N5 Sb (<5-ppm impurities). A total beam equivalent pressure of 2 × 10$^{-7}$ Torr, including both Bi and Sb, was used for all Bi$_{1-x}$Sb$_x$ films, corresponding to a growth rate of 0.5 Å/s. As the crystal structure varies with the film thickness, growth rates were calibrated using Å/s units, rather than converting to flux. The Si native oxide was removed prior to growth using hydrofluoric acid, followed by baking \textit{in situ} at 760 °C to desorb the hydrogen passivation. The Bi$_{1-x}$Sb$_x$ composition was calibrated \textit{ex situ} using x-ray photoelectron spectroscopy (XPS) and electron dispersion spectroscopy acquired with transmission electron microscopy \cite{39}. All Bi$_{1-x}$Sb$_x$ measurements were conducted on material taken from the center area of the wafer in order to avoid compositional variation across the diameter of the 3-in. wafers, which we found to be significant. Pure Bi films were grown at rates between 0.03 and 0.5 Å/s, which was found necessary to avoid surface droplet formation.

Reflective high-energy electron diffraction (RHEED) measurements acquired \textit{in situ} for 10-nm Bi$_{1-x}$Sb$_x$ films are shown in Fig. 1. Between 4 and 8 nm (12–24 ML) of pure Bi growth, the RHEED transitioned from a double-lined pattern to a 1 × 1 reconstruction [Fig. 1(a)]. As this RHEED change is associated with the A17 to A7 allotropic transformation \cite{27}, the similarity of the 4–28% Bi$_{1-x}$Sb$_x$ films [Figs. 1(b) and 1(c)] at 4 nm suggests a consistent nanoscale structure in Bi$_{1-x}$Sb$_x$. However, unlike the pure Bi film, the transition to the 1 × 1 reconstruction is suppressed by Sb alloying; only a partial 1 × 1 reconstruction formed in the 10-nm 4% film [Fig. 1(b)], and no transition was apparent in the 10-nm 28% film. This is consistent with the observation by Hirahara et al. of the disappearance of the 1 × 1 reconstruction in Bi$_{1-x}$Sb$_x$/Si(111) between 22 and 32% Sb \cite{24}. The very hazy RHEED of the Sb film in Fig. 1(d), typical of an amorphous film, suggests that the film quality degraded with increasing Sb, likely due to lower adatom mobility \cite{38}; in fact, we

FIG. 1. \textit{In situ} RHEED measurements of (a) Bi, (b) Bi$_{0.96}$Sb$_{0.04}$, (c) Bi$_{0.72}$Sb$_{0.28}$, and (d) Sb films indicating change in RHEED between 4 and 10 nm with increasing % Sb.
FIG. 2. XRD measurements of (a) thickness-dependent structure of Bi, (b) composition-dependent transition in 10-nm Bi$_{1-x}$Sb$_x$, (c) Bi$_{1-x}$Sb$_x$(001) transferred using thermal release tape (inset), and (d) thickness-dependent Bi$_{0.74}$Sb$_{0.26}$.

found that a higher substrate temperature was required for high-quality Sb growth, consistent with Sb on germanium [40].

While the structure of Bi$_{1-x}$Sb$_x$(111) in the bulklike thickness regime has been previously assumed to be consistent with A7 Bi(001) up to 32% Sb [24], we demonstrate through XRD measurements in Fig. 2 that the film orientation transitions at ~8–9% Sb. As these XRD measurements are conducted ex situ, control Bi samples capped with poly(methyl methacrylate) (PMMA) were used to confirm that the observed orientation transition is not caused by oxidation. Figure 2(a) illustrates the expected thickness-dependent structural transition in Bi reference films from Bi(012) below 4 nm to Bi(001) above 8 nm, in agreement with the observed RHEED transition. This orientation transition indicates that the established thickness-dependent allotropic transition from the A17 (012) to the A7 (001) structure is very likely occurring in pure Bi [27,28,30]. In Fig. 2(b), we find that Sb alloying in 10-nm Bi$_{1-x}$Sb$_x$ films, well above the critical thickness for the A7(001) structure in Bi, actually induces a second, composition-dependent orientation change from Bi$_{1-x}$Sb$_x$(001) to Bi$_{1-x}$Sb$_x$(012) between 4 and 9% Sb. Considering the (001) orientation of the somewhat thicker Bi$_{0.02}$Sb$_{0.08}$ sample shown in Fig. 2(c), which is found to be consistent between 8 and 30 nm, we conclude that the transition occurs between 8 and 9% Sb. The similar (003) peak position in the 4–9% Bi$_{1-x}$Sb$_x$ films compared to pure Bi is consistent with Vegard’s law, which has been previously shown to accurately describe the lattice constant of epitaxial Bi$_{1-x}$Sb$_x$ [41]. As an orientation change with increasing % Sb has not been reported in Bi$_{1-x}$Sb$_x$ thin films on other substrates, including gallium arsenide [16] and cadmium telluride [41], this phase transition may be specific to growth on Si(111). Like Bi(001), low-Sb Bi$_{1-x}$Sb$_x$(001) films are found in Fig. 2(c) to exhibit unusually weak adhesion to the Si(111) substrate [35], allowing high-quality transfer of structurally intact films using a simple thermal release tape method (shown in inset) adapted from chemical vapor deposition-grown graphene [42]. This weak adhesion suggests that the growth of Bi$_{1-x}$Sb$_x$(001) is very similar to Bi(001) on Si(111), and can enable types of applications.
Further insight into the origin of the orientation transition in Bi$_{1-x}$Sb$_x$ with >9% Sb is provided by thickness-dependent XRD measurements of Bi$_{0.74}$Sb$_{0.26}$ in Fig. 2(d). In contrast to the pure Bi films, the (012) orientation of Bi$_{0.74}$Sb$_{0.26}$ is independent of the film thickness, suggesting that nucleation of the (001)-oriented A7 structure, which has been predicted to drive the allotropic transition [29], does not occur. This A7(001) suppression could be related either to breakdown of the Bi(001)/Si(111) coincidence alignment [27,28,43] as the lattice constant is reduced by Sb alloying [43], or to lowered adatom mobility [38], which will be discussed later. The A7 crystal structure is very similar to the pseudocubic (012)-oriented A7 structure of Bi, with differences arising from layer pairing in nanoscale films to reduce the surface energy from dangling bonds [27,29]. As the film thickness increases and surface energy minimization becomes less critical, it is likely that the A7 structure gradually transitions to the A7(012) structure; however, as the d spacing between the two structures is very similar, the critical thickness cannot be distinguished by XRD.

The (012) orientation is likely to significantly impact transport in the Bi$_{1-x}$Sb$_x$ films due to changes both in the amount of quantum confinement, which is determined by the effective mass in the growth direction [44,45], and in the surface states [46,47]. While the A7 Bi(012) surface also demonstrates spin-split surface states [46,48], the surface-state dispersion is quite different from Bi(001) [46,47], and is more metallic due to the higher density of broken bonds on the (012) surface [27,48,49]. The effect of Sb alloying on Bi(012) surface states is also currently unknown. In order to determine how the orientation impacts electronic properties in A7 Bi$_{1-x}$Sb$_x$ temperature-dependent sheet conductance [$G_{ab}(T)$] and conductivity measurements of >8-nm films are compared in Fig. 3. In Fig. 3(a), $G_{ab}(T)$ for reference Bi(001) films was found to be consistent with previous reports, and characteristic of coexisting quantum confined bulk and conductive surface states [16,22,34]. Although bulk Bi is semimetallic, G_{ab} for >15-nm films increases with increasing temperature, typical of a semiconducting film, due to quantum confinement of the bulk states. The change in the temperature dependence as the film thickness is reduced below 15 nm is attributed to increasing contributions from metallic surface states in thinner films [16,34]. Bi$_{1-x}$Sb$_x$(001) films in Fig. 3(b), which contain less than 9% Sb, demonstrate a similar transition in $G_{ab}(T)$ as the film thickness is reduced; the larger change in G_{ab} in the 20-nm film is consistent with the expected increase in the indirect band gap between T and L due to Sb alloying [1,23]. The similar metallic temperature dependence of the 10-nm film is consistent with measurements of Bi$_{1-x}$Sb$_x$(001) on other substrates [16], and suggests that surface states remain present.

In contrast, as the normalized conductivity of 10-nm Bi$_{1-x}$Sb$_x$ films in Fig. 3(c) illustrates, the 10-nm Bi$_{1-x}$Sb$_x$(012) films do not exhibit the metallic temperature dependence expected for surface states; instead, a semiconducting temperature dependence corresponding to the onset of the (012) orientation is observed, which is consistent with film thickness. This result is surprising, given the metallic nature of the Bi(012) surface observed in in situ angle resolved photoemission spectroscopy (ARPES) [49]. One possibility is that, due to either the higher density of dangling bonds on the (012) surface or the larger concentration of Sb, the Bi$_{1-x}$Sb$_x$(012) surface states are less robust to oxidation.
and Bi_{0.64}Sb_{0.36} layers of a five-layer Bi/Bi_{0.64}Sb_{0.36} superlattice in Fig. 4(a) demonstrate that the underlying Bi buffer layer can assist in maintaining a 1 × 1 reconstruction in the Bi_{0.64}Sb_{0.36} layers. Each layer of the measured superlattice is 10 nm. XRD measurements of the Bi/Bi_{0.64}Sb_{0.36} superlattice and a reference 20-nm Bi_{0.64}Sb_{0.36} film in Fig. 4(b) indicate that, while the Bi_{0.64}Sb_{0.36}/Si(111) film is (012) oriented, the Bi/Bi_{0.64}Sb_{0.36} superlattice maintains a (001) orientation. The distinct superlattice peaks surrounding the main (003) peak suggest that the integrity of the layers is maintained, without significant interdiffusion. This result explains the measurement of Bi_{1−x}Sb_{x} in the TI regime by Benia et al.; as the Bi_{1−x}Sb_{x} films are grown on a 30-nm Bi buffer layer on Si(111), the (001) orientation is maintained [15]. While this approach is promising for ARPES measurements, isolating the Bi_{1−x}Sb_{x} transport from the Bi buffer layer is likely to remain challenging.

Finally, focusing on Bi_{1−x}Sb_{x} films thinner than 4 nm, in which the A17 structure is expected in Bi, we find in Fig. 5 that alloying with Sb improves the continuity and quality of nanoscale Bi_{1−x}Sb_{x} (012) films. The A17 Bi(012) phase forms even-monolayer, small-area islands, which coalesce and form a continuous film immediately before the allotropic transition to A7 Bi(001) [27–30,50]. From the high-resolution AFM measurements shown in Fig. 5(a), we find that alloying with 26% Sb decreased the island area in the 3-ML film, resulting in a higher density of smaller islands. Similar to the effect of lowering the substrate temperature [27], the close-packed nature of the Bi_{0.74}Sb_{0.26}(012) islands facilitates earlier coalescence, lowering the surface roughness by almost half compared to Bi(012) by 4 nm of growth. As demonstrated in Fig. 5(b), the conductivity of the Bi_{0.74}Sb_{0.26} films, which is normalized to the 50-nm value in order to exclude the dependence of the conductivity on the composition-dependent band structure, does not degrade with decreasing film thickness, in contrast to the behavior of Bi. The conductivity of Bi_{0.74}Sb_{0.26} films as thin as 4 nm is able to be measured successfully, while Bi films sharply increase in resistance below the critical thickness. This result indicates that Sb alloying improves the continuity of ultrathin Bi_{1−x}Sb_{x}(012) on Si(111) compared to pure Bi. If the A17 allotrope is indeed stable in nanoscale Bi_{1−x}Sb_{x} on Si(111), as is suggested by the similarity of the early growth process to pure Bi, the (012) orientation of ultrathin films, and the weak adhesion of Bi_{1−x}Sb_{x}(001) to the substrate, Sb alloying could be a promising approach toward compositional tuning of high-quality puckered-layer A17 Bi.

III. CONCLUSION

In conclusion, we demonstrate that epitaxial Bi_{1−x}Sb_{x} on Si(111) undergoes an orientation change at concentrations above 8–9% Sb, due to suppression of the A17 Bi(012) to A7 Bi(001) allotropic transition. The transition to Bi_{1−x}Sb_{x}(012) overlaps with the TI composition regime in bulk crystals (7–22% Sb), and is found to reduce the characteristic temperature-dependent conductivity of the surface states in thin films. Growth on a Bi(001) buffer layer may be a suitable method for maintaining the (001) orientation within the TI composition regime. We further demonstrate that Sb alloying results in earlier coalescence of the 2D Bi_{1−x}Sb_{x}(012) islands.
facilitating electrical measurements of ultrathin films and providing a promising route toward investigating the unique electronic properties of puckered-layer Bi$_{1-x}$Sb$_x$(012).

ACKNOWLEDGMENTS

This work was primarily supported by both the Texas Instruments Semiconductor Research Corporation Graduate Fellowship Program and the National Science Foundation through the Center for Dynamics and Control of Materials, an NSF MRSEC under Cooperative Agreement No. DMR-1720595. The authors would like to acknowledge Dr. H. Celio from the Texas Materials Institute at the University of Texas at Austin for assistance with x-ray photoelectron spectroscopy, and Prof. D. Milliron and C. Staller from the Department of Chemical Engineering at the University of Texas at Austin for assistance with electrical measurements.

of the topological insulator Bi$_{1-x}$Sb$_x$, Phys. Rev. B 80, 085307 (2009).

[36] E. Tournié and K. H. Ploog, Virtual-surfactant epitaxy of strained InAs/Al$_{0.48}$In$_{0.52}$As quantum wells, Appl. Phys. Lett. 62, 858 (1993).

